语音信号处理常用度量方法

信噪比(SNR)

有用信号功率与噪声功率的比(此处功率为平均功率),也等于幅度比的平方

$$SNR(dB)=10\log_{10}\frac{\sum_{n=0}^{N-1}s^2(n)}{\sum_{n=0}^{N-1}d^2(n)}=10*\log_{10}(\frac{P_{signal}}{P_{noise}})=20*log_{10}(\frac{A_{signal}}{A_{noise}})$$

$$SNR(dB)=10\log_{10}\frac{\sum_{n=0}^{N-1}s^2(n)}{\sum_{n=0}^{N-1}[x(n)-s(n)^2]}$$

其中:

$P_{signal}$为信号功率;$P_{noise}$为噪声功率;$A_{signal}$为信号幅度;$A_{noise}$为噪声幅度值,功率等于幅度值的平方

MATLAB版本代码

# 信号与噪声长度应该一样
function snr=SNR_singlech(Signal,Noise)

P_signal = sum(Signal-mean(Signal)).^2;     # 信号的能量
P_noise = sum(Noise-mean(Noise)).^2;     # 噪声的能量
snr = 10 * log10(P_signal/P_noise)
View Code

python代码

def numpy_SNR(origianl_waveform, target_waveform):
    # 单位 dB
    signal = np.sum(origianl_waveform ** 2)
    noise = np.sum((origianl_waveform - target_waveform) ** 2)
    snr = 10 * np.log10(signal / noise)
    return snr

$$np.linalg.norm(x)=\sqrt{x_1^2+x_2^2+...+x_n^2}$$

这个公式和上面是一样的

def wav_snr(ref_wav, in_wav):# 如果ref wav稍长,则用0填充in_wav
    if (abs(in_wav.shape[0] - ref_wav.shape[0]) < 10):
        pad_width = ref_wav.shape[0] - in_wav.shape[0]
        in_wav = np.pad(in_wav, (0, pad_width), 'constant')
    else:
        print("错误:参考wav与输入wav的长度明显不同")
        return -1

    # 计算 SNR
    norm_diff = np.square(np.linalg.norm(in_wav - ref_wav))
    if (norm_diff == 0):
        print("错误:参考wav与输入wav相同")
        return -1

    ref_norm = np.square(np.linalg.norm(ref_wav))
    snr = 10 * np.log10(ref_norm / norm_diff)
    return snr

峰值信噪比(PSNR)

表示信号的最大瞬时功率和噪声功率的比值,最大瞬时功率为语音数据中最大值得平方。

$$SNR(dB)=10*\log _{10}(\frac{MAX(P_{signal})}{P_{noise}})=10\log_{10}\frac{MAX[s(n)]^2}{d^2(n)}$$

$$SNR(dB)=10\log_{10}\frac{MAX[s(n)]^2}{\frac{1}{N}\sum_{n=0}^{N-1}[x(n)-s(n)]^2}=20\log_{10}\frac{MAX[s(n)]}{\sqrt{MSE}}$$

import numpy as np 

def psnr(ref_wav, in_wav):
    MSE = numpy.mean((ref_wav - in_wav) ** 2)
    MAX = np.max(ref_wav)       # 信号的最大平时功率
    return 20 * np.log10(MAX / np.sqrt(MSE))

分段信噪比(SegSNR)

  由于语音信号是一种缓慢变化的短时平稳信号,因而在不同时间段上的信噪比也应不一样。为了改善上面的问题,可以采用分段信噪比。分段信噪比即是先对语音进行分帧,然后对每一帧语音求信噪比,最好求均值。

MATLAB版本的代码

function [segSNR] = Evaluation(clean_speech,enhanced)

N = 25*16000/1000; %length of the segment in terms of samples
M = fix(size(clean_speech,1)/N); %number of segments
segSNR = zeros(size(enhanced));
for i = 1:size(enhanced,1)
    for m = 0:M-1
        sum1 =0;
        sum2 =0;
        for n = m*N +1 : m*N+N
            sum1 = sum1 +clean_speech(n)^2;
            sum2 = sum2 +(enhanced{i}(n) - clean_speech(n))^2;
        end
        r = 10*log10(sum1/sum2);
        if r>55
            r = 55;
        elseif r < -10
            r = -10;
        end
       
        segSNR(i) = segSNR(i) +r;
    end
    segSNR(i) = segSNR(i)/M;
end
View Code

python代码

def SegSNR(ref_wav, in_wav, windowsize, shift):
    if len(ref_wav) == len(in_wav):
        pass
    else:
        print('音频的长度不相等!')
        minlenth = min(len(ref_wav), len(in_wav))
        ref_wav = ref_wav[: minlenth]
        in_wav = in_wav[: minlenth]
    # 每帧语音中有重叠部分,除了重叠部分都是帧移,overlap=windowsize-shift
    # num_frame = (len(ref_wav)-overlap) // shift
    # num_frame = (len(ref_wav)-windowsize+shift) // shift
    num_frame = (len(ref_wav) - windowsize) // shift + 1  # 计算帧的数量

    SegSNR = np.zeros(num_frame)
    # 计算每一帧的信噪比
    for i in range(0, num_frame):

        noise_frame_energy = np.sum(ref_wav[i * shift, i * shift+windowsize] ** 2)  # 每一帧噪声的功率
        speech_frame_energy = np.sum(in_wav[i * shift, i * shift+windowsize] ** 2)  # 每一帧信号的功率
        SegSNR[i] = np.log10(speech_frame_energy / noise_frame_energy)

    return 10 * np.mean(SegSNR)

 

对数拟然对比度(log Likelihood Ratio Measure)

  坂仓距离测度是通过语音信号的线性预测分析来实现的。ISD基于两组线性预测参数(分别从原纯净语音和处理过的语音的同步帧得到)之间的差异。LLR可以看成一种坂仓距离(Itakura Distance,IS)但是IS距离需要考虑模型增益。而LLR不需要考虑模型争议引起的幅度位移,更重视整体谱包络的相似度。

PESQ

  PESQ是用于语音质量评估的一种方法,ITU提供了C语言代码,下载请点击这里,但是在使用之前我们需要先编译C脚本,生成可执行文件exe

编译方式为:在命令行进入下载好的文件

  1. cd \Software\source
  2. gcc -o PESQ *.c

  经过编译,会在当前文件夹生成一个pesq.exe的可执行文件

使用方式为:

  1. 命令行进入pesq.exe所在的文件夹
  2. 执行命令:pesq 采样率 "原始文件路径名" "劣化文件路径名”
  3. 回车
  4. 等待结果即可,值越大,质量越好。
    • 例如:pesq +16000 raw.wav processed.wav

对数谱距离(Log Spectral Distance)

两个频谱之间的距离度量(用分贝表示)。两个频谱$P(W)$和$\hat{P}(w)$之间的对数谱距离被定义为:

$$D_{LS}=\sqrt{\frac{1}{2\pi}\int_{-\pi}^{\pi}[10*\log _{10}\frac{P(w)}{\hat{P}(w)}]^2dw}$$

其中,$p(w)$和$\hat{P}(w)$是功率谱。对数谱距离是时多对称的。

def numpy_LSD(origianl_waveform, target_waveform):
    """ 比较原始和目标音频之间的对数谱距离(LSD),也称为对数谱失真,
    是两个频谱之间的距离测量值(以dB表示) """

    print("数据形状为", origianl_waveform.shape)
    print("数据类型为", type(origianl_waveform))

    original_spectrogram = librosa.core.stft(origianl_waveform, n_fft=2048)
    target_spectrogram = librosa.core.stft(target_waveform, n_fft=2048)

    original_log = np.log10(np.abs(original_spectrogram) ** 2)
    target_log = np.log10(np.abs(target_spectrogram) ** 2)
    original_target_squared = (original_log - target_log) ** 2
    target_lsd = np.mean(np.sqrt(np.mean(original_target_squared, axis=0)))

    return target_lsd

参考文献:

非典型废言的CSDN博客

视频质量度量指标

 

posted @ 2019-09-11 17:02 凌逆战 阅读(...) 评论(...) 编辑 收藏